Erratum to: Canonical Moments and Random Spectral Measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical moments and random spectral measures

Abstract: We study some connections between the random moment problem and the random matrix theory. A uniform pick in a space of moments can be lifted into the spectral probability measure of the pair (A, e) where A is a random matrix from a classical ensemble and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations ...

متن کامل

Matrix measures, random moments and Gaussian ensembles

We consider the moment space Mn corresponding to p × p real or complex matrix measures defined on the interval [0, 1]. The asymptotic properties of the first k components of a uniformly distributed vector (S1,n, . . . , Sn,n) ∗ ∼ U(Mn) are studied if n → ∞. In particular, it is shown that an appropriately centered and standardized version of the vector (S1,n, . . . , Sk,n) ∗ converges weakly to...

متن کامل

Higher moments for random multiplicative measures

We obtain a condition for the Lq-convergence of martingales generated by random multiplicative cascade measures for q > 1 without any self-similarity requirements on the cascades.

متن کامل

Spectral measures of random graphs

These lecture notes are devoted to the spectral analysis of adjacency operators of graphs and random graphs. With the notion of unimodular random graphs, it is possible to define a natural notion of average spectral measure which corresponds to the density of states in the language of mathematical physics, to the Plancherel measure for Cayley graphs and, for finite graphs, to the empirical meas...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2015

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-015-0653-5