Erratum to: Canonical Moments and Random Spectral Measures
نویسندگان
چکیده
منابع مشابه
Canonical moments and random spectral measures
Abstract: We study some connections between the random moment problem and the random matrix theory. A uniform pick in a space of moments can be lifted into the spectral probability measure of the pair (A, e) where A is a random matrix from a classical ensemble and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations ...
متن کاملMatrix measures, random moments and Gaussian ensembles
We consider the moment space Mn corresponding to p × p real or complex matrix measures defined on the interval [0, 1]. The asymptotic properties of the first k components of a uniformly distributed vector (S1,n, . . . , Sn,n) ∗ ∼ U(Mn) are studied if n → ∞. In particular, it is shown that an appropriately centered and standardized version of the vector (S1,n, . . . , Sk,n) ∗ converges weakly to...
متن کاملHigher moments for random multiplicative measures
We obtain a condition for the Lq-convergence of martingales generated by random multiplicative cascade measures for q > 1 without any self-similarity requirements on the cascades.
متن کاملSpectral measures of random graphs
These lecture notes are devoted to the spectral analysis of adjacency operators of graphs and random graphs. With the notion of unimodular random graphs, it is possible to define a natural notion of average spectral measure which corresponds to the density of states in the language of mathematical physics, to the Plancherel measure for Cayley graphs and, for finite graphs, to the empirical meas...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2015
ISSN: 0894-9840,1572-9230
DOI: 10.1007/s10959-015-0653-5